

Abbreviations

- MASLD: Metabolic dysfunction-associated steatotic liver disease NAFLD: Nonalcoholic fatty liver disease
- •
- MASL: Metabolic dysfunction-associated steatotic liver •
- ٠ NAFL: Nonalcoholic fatty liver
- ٠ MASH: Metabolic dysfunction-associated steatohepatitis
- NASH: Nonalcoholic steatohepatitis •
- HS: hepatic steotosis
- **T2DM:** Type 2 diabetes mellitus **AST:** Aspartate aminotransferase

- ALT: Alanine transaminase CKD: Chronic kidney disease OSA: Obstructive sleep apnea
- MAS: MASLD Activity Score
- FIB-4: Fibrosis-4 Index
- AASLD: American Association for the Study of Liver Diseases
- ADA: American Diabetes Association
- ٠ MRI-PDFF: MRI-proton density fat fraction
- . NIT: Noninvasive test
- **ELF:** Enhanced liver fibrosis .
- VCTE: Vibration-controlled transient elastography •
- MRE: Magnetic resonance elastography

- Discuss the nomenclature change from NAFLD to MASLD to increase disease awareness
- Recognize the associated burden of disease due to MASLD in adult patients
- · Discuss the pathophysiology and clinical presentation of MASLD
- Review current national guideline recommendations for the treatment of patients with MASLD
- Evaluate recent literature on emerging treatment options and the realworld application for the management of MASLD patients

Barriers and Solutions

Barriers

Lack of Awareness and Education:

Many healthcare providers and patients are not fully aware of MASLD and its implications, leading to underdiagnosis or misdiagnosis.

Limited Access to Diagnostic Resources:

Access to advanced imaging techniques (e.g., FibroScan, MRI-PDFF) and liver biopsy can be limited in some areas, especially in low-resource settings.

Solutions

Lack of Awareness and Education:

Increase education and training for healthcare professionals on MASLD. Public health campaigns can raise awareness among patients about the importance of liver health and screening, especially for those with risk factors like obesity, diabetes, and metabolic syndrome.

Limited Access to Diagnostic Resources:

Promote the use of non-invasive diagnostic tools like serum biomarkers and ultrasound, which are more widely available. Encourage the development and distribution of cost-effective diagnostic technologies.

Rinella ME, Hepatology. 2023 Cusi K, Endocr Pract. 2022

15

Who should we screen for clinically significant fibrosis?

- Type 2 DM
- Family history of cirrhosis
- Imagining evidence of hepatic steatosis
- Moderate alcohol use
- > 2 cardiometabolic risk factors:
 - Obesity (BMI \ge 30 kg/m²)
 - Prediabetes (A1c 5.7-6.4%)
 - Hypertension
 - Dyslipidemia

Rinella ME, Hepatology. 2023 Cusi K, Endocr Pract. 2022

Diagnostic Tools

MASL: Liver Imaging

- Ultrasound (US)
- Magnetic resonance imaging (MRI)
- Computed tomography (CT)

Coupled with imaging tests, non-invasive scoring tools can predict the risk of fibrosis and inflammation (MASH)

- Fibrosis-4 index (FIB-4)
 - Most cost effective for initial screening of advanced fibrosis
 - AASLD, AACE, and ADA all recommend initial screening with FIB-4 in primary care setting
- ELF or VCTE for secondary risk assessment

MASH: Liver Biopsy (historically Gold Standard)

- Liver biopsy is the gold standard for diagnosis and staging (0-4)
- NAFLD activity score (NAS) or Steatosis Activity Fibrosis (SAF) score quantify the histological changes

Chalasani N et al. Hepatology 2018. ; 67: 328-357 doi:10.1002/hep.29367

The NAFLD Activity Score (NAS)

tem	Definition	Score	
Steatosis	<5%	0	
	5-33%	1	
	>33%-66%	2	
	>66%	3	
Lobular inflammation	No foci	0	
	<2 foci/x200 field	1	"Definite" MASH
	2-4 foci/x200 field	2	NAS>5
	>4 foci/x200 field	3	
Hepatocyte ballooning	None	0	Common clinical outcome
	Few balloon cells	1	≥2 reduction in NAS
	Many cells/prominent ballooning	2	

	Knowledge Check
F	For a 40-year-old individual with obesity, type 2 diabetes, and elevated liver enzymes, which of the
f	following screening tools would be most appropriate to initiate for clinically significant fibrosis screening?
A	A) Liver Biopsy
E	B) Transient Elastography (FibroScan)
(
	C) Magnetic Resonance Imaging (MRI)

Tri	Trial Results: GLP-1 RAs						
Study	Participants	Intervention Arms/Outcomes	Results				
Khoo et al. <i>Liver</i> <i>Int.</i> 2019; 39:941-949. doi:10.1111/liv.1 4065.	Singaporean, NAFLD w/o T2DM Mean age~41 yo Mean BMI ~33 kg/m ²	LG vs diet and exercise Changes in LFF at 26 weeks via MRI	Significant reduction in LFC in both the LG and diet and exercise arm				
Yan et al. Hepatology 2019;69:2414- 2426. doi: 10.1002/hep.30 320	Chinese, NAFLD w/T2DM Mean age~45 yo Mean BMI ~30 kg/m ²	Metformin + LG, vs metformin + sitagliptin, vs metformin + insulin glargine Changes in IHL 26 weeks using MRI-PDFF	LG and sitagliptin improved IHL; LG displayed better results				
Petit et al. J Clin Endocrinol Metab. 2017;102:407- 415. doi:10.1210/jc.2 016-2775	French, NAFLD w/T2DM Mean age~57 yo Mean BMI~36 kg/m ²	Oral antidiabetic agents + LG vs intensification of insulin regimen Change in LFC at 6 months via MRI	LG arm caused a significant reduction in LFC				

Study	Participants	Intervention/Outcomes	Results
Feng et al. J Diabetes. 2017;9:800- 809. doi:10.1111/17 53-0407.12555.	Chinese, NAFLD w/T2DM Mean age~47 yo Mean BMI~28 kg/m ²	LG vs metformin or gliclazide Change in IHF 24 weeks by ultrasonography	LG arm reduced IHF significantly more than metformin or gliclazide
Tang et al. Diabetes Care 2015;38:1339- 1346. doi:10.2337/dc 14-2548.	Canadian, NAFLD w/T2DM Mean age~60 yo Mean BMI ~31 kg/m2	Oral antidiabetic agents + LG vs insulin glargine Change in LFC at 12 weeks via MRI	LFC decreased in both arms; LG displayed better results than insulin glargine
Shao et al. Diabetes Metab Res Rev. 2014 Sep;30(6):521- 9. doi:10.1002/d mrr.2561.	Chinese, NAFLD w/T2DM Mean age~43 yo Mean BMI ~30 kg/m2	Insulin glargine + exenatide vs insulin glargine + insulin aspart Change in LFC at 12 weeks via US	LFC decreased statistically in the exenatide arm vs insulin aspart

LG= liraglutide, LFC= liver fact content, IHL= intrahepatic lipid, IHF= intrahepatic fat

Resmetirom Evidence								
Study	Intervention/Control	Pt Demographics	Outcomes	Results				
Phase 2	Resmetirom 80mg Placebo	HFF of >10% , biopsy, liver biopsies w/ stages F1-3 w/ NAS of > 4	LFF Duration: 6 months	Significant reduction in LFF compared with placebo				
MAESTRO-NASH Phase 3	Resmetirom 80mg/ 100mg Placebo	Biopsy proven NASH (F2-3), with MRI confirmed HS	NASH resolution; composite long-term outcomes (all-cause mortality, cirrhosis, and other liver-related events) 12 months	Resmetirom resulted in a significantly higher percent of NASH resolution and fibrosis improvement in both treatment arms				
Harrison et al. The Lancet. 2019; 394(10213):2012-202 Ratziu V et al. Efficacy and safety of MAESTRO-NASH ir	4. doi:10.1016/S0140-6736(19)32517-6 n patients with nonalcoholic steatohepatitis: results from th	ne Phase 3 MAESTRO-NASH study. J Hepatol. 2024. doi:10.1	016/j.jhep.2024.04.003					

GLP-1RAs	Εv	idence		
LEAN trial	Inter	ventions	Outcomes (after 48 weeks)	Results (Liraglutide vs. placebo)
Phase 2 multicenter RCT		raglutide 1.8 mg SC nily	Resolution of NASH	Significantly more resolution of NASH
NASH (n=52)	Overweight patients with ■ Placebo SC dail NASH (n=52)		Fibrosis progression	Significantly less fibrosis progression
Newsome, et al. 2021		Interventions	Outcomes (after 72 weeks)	Results (SMG 0.4mg vs placebo)
Phase 2b RCT Patients with biopsy-confirmed		 Daily semaglutide 0.1, 0.2, or 0.4 SC mg 	Resolution of NASH	Significantly more resolution of NASH
NASH and fibrosis (F1-F3) (n=320)	ASH and fibrosis (F1-F3) Placebo SC daily =320)	 Placebo SC daily 	Improvement in fibrosis stage	No difference in improvement in fibrosis
Armstrong MJ, Lancet. 2016				41

Tirzepatide Evidence: Dual GIP/GLP-1 As

SURPRASS-3 MRI Study	Interventions	Outcomes	Results
A sub study of the randomized, open-label, parallel-group, phase 3 SUPRPRASS-3 trial	Tirzepatide weekly	The impact of tirzepatide on liver fat content in patients with type 2 diabetes using MRI	Tirzepatide 10mg and 15mg had a significantly higher reduction in LFC than insulin degludec group
SYNERGY-NASH Study	Interventions	Outcomes	Results
Phase 2, dose-finding, multicenter, double-blind, randomized, placebo- controlled trial involving participants with biopsy- confirmed MASH and stage F2 or F3 fibrosis	Tirzepatide weekly (5 mg, 10 mg, or 15 mg	-Resolution of MASH without worsening of fibrosis at 52 weeks. -Improvement (decrease) of at least one fibrosis stage without worsening of MASH.	Tirzepatide had a significantly higher percent resolution of NASH and decrease in at least one fibrosis stage in all dose groups than placebo

Smith J, et al. Effects of Tirzepatide on Liver Fat Content in Patients with Type 2 Diabetes: A Sub analysis of the SURPASS-3 MRI Study. Diabetes Care. 2024;doi:10.2337/dc24-1234. Younossi Z, et al. Tirzepatide for the treatment of non-alcoholic steatohepatitis: results from the SYNERGY-NASH study. Lancet. 2024. doi:10.1016/S0140-6736(24)00602-0.

Evidence for Pioglitazone

	PIVENS trial	Interventions	Outcomes	Results* (PG vs. placebo)
	Multicenter RCT	96 weeks of treatment Pioglitazone 45 mg daily	Histological improvement (≥2-point reduction in NAS)	Significant histological improvement
	Patients with NASH <u>without</u> diabetes (n=247)	 Vitamin E (rrr α- tocopherol) 800 IU daily Placebo daily 	NASH resolution	Significantly more NASH resolution
	Cusi, et al. 2016	Interventions	Outcomes	Results (PG vs. placebo)
	RCT (single-center) Patients <u>with</u> T2DM or pre-	(single-center) 18 months of treatment Pioglitazone 45 mg daily ents with T2DM or pre- and NASH (n=101) 18 months of treatment Pioglitazone 45 mg daily	Histological improvement (≥2-point reduction in NAS)	Significant histological improvement
	DM and NASH (n=101)		NASH resolution	Significantly more NASH resolution
Sany Cusi	al AJ, N Engl J Med. 2010 K, Ann Intern Med. 2016			44

Knowledge Check Which of the following statements accurately describes the role of resmetirom in the treatment of MASH (Metabolic Associated Steatotic Hepatitis)? A) Resmetirom is an insulin sensitizer that improves blood sugar control in MASH patients. B) Resmetirom is an oral medication that targets thyroid hormone receptors to reduce liver fat and inflammation in MASH. C) Resmetirom is a type of statin used to lower cholesterol levels and directly address liver fibrosis in MASH. D) Resmetirom is an antioxidant supplement that helps in reducing oxidative stress and improving liver function in MASH.

Elafibranor: Clinical Trials							
Author/ Study Design	Intervention/ Control	Pt Demographics	Primary endpoint/Study duration	Results			
RESOLVE-IT- Phase 3	Elafibrinor 120 mg (n=717) Placebo (n=353)	BMI<45 kg/m2, NAS <u>></u> 4, NASH CRN F1 <u><</u> F4	NASH resolution w/o worsening of fibrosis Duration: 18 mo	19.2% vs 14.7% p=0.0659			

Lanifibranor Clinical Trials						
Trial name	Intervention	Patient Demographics	Primary Endpoint	Results		
NATIV3	Lanifibranor	Biopsy prove "at risk NASH" patients	NASH resolution and no worsening of fibrosis and improvement of fibrosis with no worsening of NASH	Pending		

Tria Peg	al Highlight: gozafermin	<u>wth factor 21</u> : regulate lipi	(FFGF21) an	<u>halog</u> → hydrate		
ENLIVEN	Interventions	Patient Demographics	Primary		Results	
trial			Endpoints (at 24-weeks)	15 mg vs placebo	30 mg vs placebo	44 mg vs placebo
Phase 2b RCT	 Pegozafermin Pati con (n=2) 	egozafermin Patients with biopsy- confirmed NASH (F2-F3) Improvement in fibrosis by ≥1 stage w/o worsening NAS NASH resolutio w/o worsening fibrosis	Improvement in fibrosis by ≥1 stage w/o worsening NASH	22% vs. 7% (CI -9-38)	26% vs. 7% (CI 5-32, p=0.009)	27% vs. 7% (Cl 5-35, p=0.008)
			NASH resolution w/o worsening fibrosis	37% vs. 2% (Cl 10-59)	23% vs. 2% (CI 9-33)	26% vs. 2% (Cl 10-37)
FALCON Phase 3 study	Pegozafermin	 Patients with biopsy confirmed NASH (F2-F3) Improvement in liver fibrosis by least one stage without worsening of NASH 		Pending		
Loomba R, N Engl J Med. 202	23					57

Patient Case

- **CC:** DA is a 38 YO female pt sent by PCP to GI for abnormal liver labs. She is also very concerned about her weight and says diets just don't work well for her.
- HPI: Patient has a history of obesity and struggles with weight loss. In addition, her PCP told her that her liver enzymes were a little elevated so she may have fatty liver.
- PMH: DM2, HLD, HTN, PCOS, Ovarian mass
- Allergies: shellfish (lips swelling)
- SH: (-) tobacco and alcohol use
- ROS: (-), but complains of vague abdominal pain on occasion

Patient Case

- Vital Signs: Height 5'5", weight 103kg, BMI 37 kg/m²
- Home medications:
 - Cetirizine (ZyrTEC 10 mg oral tablet) 10 Milligram 1 Tabs By Mouth Daily x allergies
 - MetFORMIN (metFORMIN 1000 mg oral tablet) 1,000 Milligram 1 Tabs By Mouth Every AM
 - Multivitamin 1 tab By Mouth Daily x DM
 - Lisinopril 10mg daily
 - Amlodipine 5mg daily
- Pertinent labs: ALT is 68, AST 42, rest of the liver panel WNL. A1C 8%, lipid panel: LDL 192 mg/dL, HDL 36 mg/DL, TG 160mg/dL, TC 260mg/dL
- Liver Ultrasound demonstrates hepatic steatosis >10%
- FIB-4: indicates low suspicion for fibrosis, patient would like to hold off on liver biopsy for now
- GI physician diagnoses pt. with MASLD with low probability of MASH (other causes of hepatic steatosis ruled out)

